Simplify [tex]\left(m^6 n\right)^3[/tex].

A. [tex]m n^{21}[/tex]
B. [tex]m^9 n^3[/tex]
C. [tex]m^{18} n[/tex]
D. [tex]m^{18} n^3[/tex]



Answer :

To simplify the algebraic expression \(\left(m^6 n\right)^3\), follow these steps:

1. Understand the Expression:
The expression \(\left(m^6 n\right)^3\) involves raising a product to a power. According to the properties of exponents, we can distribute the exponent over the product inside the parentheses.

2. Apply the Power to Each Factor:
The expression can be broken down, applying the power of 3 to each factor inside the parentheses:
[tex]\[ \left(m^6 n\right)^3 = (m^6)^3 \cdot (n)^3 \][/tex]

3. Calculate the New Exponents:
- For \(m^6\):
[tex]\[ (m^6)^3 = m^{6 \cdot 3} = m^{18} \][/tex]
- For \(n\):
[tex]\[ n^3 = n^3 \][/tex]

4. Combine the Results:
The simplified expression, therefore, is:
[tex]\[ m^{18} \cdot n^3 \][/tex]

So, the expression \(\left(m^6 n\right)^3\) simplifies to:

[tex]\[ m^{18} n^3. \][/tex]

Hence, the correct answer is:
[tex]\[ m^{18} n^3. \][/tex]