Answer: [tex]622.6 \text{ in}^2[/tex]
Step-by-step explanation:
The area of each of the two side triangular faces is [tex]\frac{1}{2} \cdot 12 \cdot 17=102 \text{ in}^2[/tex].
The area of the top and bottom triangular faces is [tex]\frac{1}{2} \cdot 12.9 \cdot 14=90.3 \text{ in}^2[/tex].
The area of the rectangular base is [tex]17 \cdot 14=238 \text{ in}^2[/tex].
Therefore, the total surface area is [tex]238+2 \cdot 102+2 \cdot 90.3=622.6 \text{ in}^2[/tex].