What is the product?

[tex]\[ 6\left(x^2-1\right) \cdot \frac{6x-1}{6(x+1)} \][/tex]

A. \( 6(x-1)^2 \)
B. \( 6\left(x^2-1\right) \)
C. \( (x+1)(6x-1) \)
D. [tex]\( (x-1)(6x-1) \)[/tex]



Answer :

Let's simplify the given mathematical expression step by step:

Given expression:
[tex]\[ 6\left(x^2-1\right) \cdot \frac{6x-1}{6(x+1)} \][/tex]

### Step 1: Factorize and Simplify
First, let's analyze each part of the expression separately.

#### Expression \(6(x^2 - 1)\):
The term \(x^2 - 1\) is a difference of squares, which can be factored as:
[tex]\[ x^2 - 1 = (x - 1)(x + 1) \][/tex]
So:
[tex]\[ 6(x^2 - 1) = 6(x - 1)(x + 1) \][/tex]

#### Expression \(\frac{6x-1}{6(x+1)}\):
This part is already in a simplified fractional form.

### Step 2: Combine the Expressions
Now we combine the two expressions:
[tex]\[ 6(x - 1)(x + 1) \cdot \frac{6x - 1}{6(x + 1)} \][/tex]

We can cancel out the common factor \((x + 1)\) in the numerator and the denominator:
[tex]\[ 6(x - 1)(x + 1) \cdot \frac{6x - 1}{6(x + 1)} = 6(x - 1) \cdot \frac{6x - 1}{1} = 6(x - 1)(6x - 1) \][/tex]

### Step 3: Check the Possible Options
Now we need to see which of the given options matches the simplified product:

1. \(6(x - 1)^2\)
2. \(6(x^2 - 1)\)
3. \((x + 1)(6x - 1)\)
4. \((x - 1)(6x - 1)\)

From our simplification, we see that the expression \(6(x - 1)(6x - 1)\) resembles option 4:
[tex]\[ (x - 1)(6x - 1) \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{4} \][/tex]