\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline [tex]$x$[/tex] & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline [tex]$f(x)$[/tex] & 14 & 6 & 0 & -4 & -6 & -6 & -4 & 0 & 6 \\
\hline
\end{tabular}

Based on the table, which statement best describes a prediction for the end behavior of the graph of [tex]$f(x)$[/tex]?

A. As [tex]$x \rightarrow \infty, f(x) \rightarrow-\infty$[/tex], and as [tex]$x \rightarrow-\infty, f(x) \rightarrow \infty$[/tex]

B. As [tex]$x \rightarrow \infty, f(x) \rightarrow \infty$[/tex], and as [tex]$x \rightarrow-\infty, f(x) \rightarrow \infty$[/tex]

C. As [tex]$x \rightarrow \infty, f(x) \rightarrow \infty$[/tex], and as [tex]$x \rightarrow-\infty, f(x) \rightarrow-\infty$[/tex]

D. As [tex]$x \rightarrow \infty, f(x) \rightarrow-\infty$[/tex], and as [tex]$x \rightarrow-\infty, f(x) \rightarrow-\infty$[/tex]



Answer :

To determine the end behavior of the function \( f(x) \), we need to analyze the trends in the values of \( x \) and \( f(x) \) given in the table. The table provides the following values:

[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline x & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ \hline f(x) & 14 & 6 & 0 & -4 & -6 & -6 & -4 & 0 & 6 \\ \hline \end{array} \][/tex]

From the table, we observe the following:

1. As \( x \) increases from \(-5\) to \(3\), the function \( f(x) \) starts at \( 14 \), decreases to \( -6 \) around \( x = -1 \), and then increases back to \( 6 \) as \( x \) reaches \( 3 \).

2. This pattern suggests that \( f(x) \) tends to increase again as \( x \) continues to grow positively.

3. Similarly, If we consider \( x \) becoming more negative from \(-5\) onwards, \( f(x) \) is seen to start high at \( 14 \), decrease significantly, and shows a potential to start increasing beyond the given negative values.

Based on these observations, the trend indicates:

- As \( x \rightarrow \infty \), \( f(x) \rightarrow \infty \)
- As \( x \rightarrow -\infty \), \( f(x) \rightarrow \infty \)

So, the statement that best describes the prediction for the end behavior of the graph of \( f(x) \) is:

"As \( x \rightarrow \infty, f(x) \rightarrow \infty \), and as \( x \rightarrow-\infty, f(x) \rightarrow \infty \)"

This corresponds to the second choice:

"As [tex]\( x \rightarrow \infty, f(x) \rightarrow \infty \)[/tex], and as [tex]\( x \rightarrow-\infty, f(x) \rightarrow \infty \)[/tex]"