poopey
Answered

What is the product?

[tex]\[
\left(-6 a^3 b + 2 a b^2\right)\left(5 a^2 - 2 a b^2 - b\right)
\][/tex]

A. \(-30 a^6 b + 12 a^3 b^2 + 6 a^3 b + 10 a^2 b^2 - 4 a b^4 - 2 a b^2\)

B. \(-30 a^5 b + 12 a^4 b^3 + 16 a^3 b^2 - 4 a^2 b^4 - 2 a b^3\)

C. \(30 a^5 b - 12 a^4 b^3 + 4 a^3 b^2 - 4 a^2 b^4 - 2 a b^3\)

D. [tex]\(30 a^6 b - 12 a^3 b^2 - 6 a^3 b + 10 a^2 b^2 - 4 a b^4 - 2 a b^2\)[/tex]



Answer :

To find the product of the two expressions \( (-6 a^3 b + 2 a b^2)(5 a^2 - 2 a b^2 - b) \), we need to multiply each term in the first expression by each term in the second expression. Let's break it down step-by-step:

1. Multiply \(-6 a^3 b\) by each term in \( 5 a^2 - 2 a b^2 - b \):
- \((-6 a^3 b) \cdot (5 a^2) = -30 a^5 b \)
- \((-6 a^3 b) \cdot (-2 a b^2) = 12 a^4 b^3 \)
- \((-6 a^3 b) \cdot (-b) = 6 a^3 b^2 \)

2. Multiply \(2 a b^2\) by each term in \(5 a^2 - 2 a b^2 - b\):
- \((2 a b^2) \cdot (5 a^2) = 10 a^3 b^2\)
- \((2 a b^2) \cdot (-2 a b^2) = -4 a^2 b^4\)
- \((2 a b^2) \cdot (-b) = -2 a b^3\)

3. Add all these terms together to get the final expanded expression:
- \( -30 a^5 b \)
- \( + 12 a^4 b^3 \)
- \( + 6 a^3 b^2 \)
- \( + 10 a^3 b^2 \)
- \( -4 a^2 b^4 \)
- \( -2 a b^3 \)

4. Combine like terms:
- \(6 a^3 b^2 + 10 a^3 b^2 = 16 a^3 b^2 \)

Therefore, the final product is:
[tex]\[ -30 a^5 b + 12 a^4 b^3 + 16 a^3 b^2 - 4 a^2 b^4 - 2 a b^3 \][/tex]

Comparing this with the given possible answers, we find that the correct answer is:
[tex]\[ -30 a^5 b + 12 a^4 b^3 + 16 a^3 b^2 - 4 a^2 b^4 - 2 a b^3 \][/tex]