Sure, let's evaluate the expression \( t^2 \) step-by-step for the given values of \( t \).
### Part (a): For \( t = 5 \)
1. Substitute \( t = 5 \) into the expression: \( t^2 \)
2. Calculate \( 5^2 \):
[tex]\[
5^2 = 5 \times 5 = 25
\][/tex]
3. Result:
[tex]\[
t^2 = 25 \quad \text{for} \; t = 5
\][/tex]
### Part (b): For \( t = -4 \)
1. Substitute \( t = -4 \) into the expression: \( t^2 \)
2. Calculate \( (-4)^2 \):
[tex]\[
(-4)^2 = (-4) \times (-4) = 16
\][/tex]
3. Result:
[tex]\[
t^2 = 16 \quad \text{for} \; t = -4
\][/tex]
In summary, the expression \( t^2 \) evaluates to:
- 25 when \( t = 5 \)
- 16 when [tex]\( t = -4 \)[/tex]