Answer :

Sure, let's evaluate the expression \( t^2 \) step-by-step for the given values of \( t \).

### Part (a): For \( t = 5 \)

1. Substitute \( t = 5 \) into the expression: \( t^2 \)
2. Calculate \( 5^2 \):
[tex]\[ 5^2 = 5 \times 5 = 25 \][/tex]
3. Result:
[tex]\[ t^2 = 25 \quad \text{for} \; t = 5 \][/tex]

### Part (b): For \( t = -4 \)

1. Substitute \( t = -4 \) into the expression: \( t^2 \)
2. Calculate \( (-4)^2 \):
[tex]\[ (-4)^2 = (-4) \times (-4) = 16 \][/tex]
3. Result:
[tex]\[ t^2 = 16 \quad \text{for} \; t = -4 \][/tex]

In summary, the expression \( t^2 \) evaluates to:
- 25 when \( t = 5 \)
- 16 when [tex]\( t = -4 \)[/tex]