If [tex]JM = 5x - 8[/tex] and [tex]LM = 2x - 6[/tex], which expression represents [tex]JL[/tex]?

A. [tex]3x - 2[/tex]
B. [tex]3x - 14[/tex]
C. [tex]7x - 2[/tex]
D. [tex]7x - 14[/tex]



Answer :

To find the expression that represents \( JL \), we need to combine the given expressions for \( JM \) and \( LM \).

Given:
[tex]\[ JM = 5x - 8 \][/tex]
[tex]\[ LM = 2x - 6 \][/tex]

We want to find the expression for \( JL \) such that \( JL = JM + LM \).

Step-by-step process:

1. Combine the expressions:
[tex]\[ JL = (5x - 8) + (2x - 6) \][/tex]

2. Group the like terms (combine the terms involving \( x \) and the constant terms):
[tex]\[ JL = 5x + 2x - 8 - 6 \][/tex]

3. Add the coefficients of \( x \):
[tex]\[ 5x + 2x = 7x \][/tex]

4. Add the constant terms:
[tex]\[ -8 - 6 = -14 \][/tex]

Therefore, the expression for \( JL \) is:
[tex]\[ JL = 7x - 14 \][/tex]

So, the correct expression that represents \( JL \) is:
[tex]\[ 7x - 14 \][/tex]

Hence, the correct answer is:
[tex]\[ \boxed{7x - 14} \][/tex]