5. Express the fractions [tex]\frac{1}{2}, \frac{3}{16}[/tex], and [tex]\frac{7}{8}[/tex] with a common denominator (LCD).

A. [tex]\frac{4}{8}, \frac{6}{8}[/tex], and [tex]\frac{14}{8}[/tex]
B. [tex]\frac{1}{32}, \frac{3}{32}[/tex], and [tex]\frac{7}{32}[/tex]
C. [tex]\frac{8}{16}, \frac{3}{16}[/tex], and [tex]\frac{14}{16}[/tex]
D. [tex]\frac{1}{4}, \frac{3}{4}[/tex], and [tex]\frac{7}{4}[/tex]



Answer :

To express the fractions \( \frac{1}{2} \), \( \frac{3}{16} \), and \( \frac{7}{8} \) with a common denominator, we follow these steps:

1. Identify the denominators of the given fractions. Here, the denominators are 2, 16, and 8.

2. Find the least common denominator (LCD) that all these denominators can divide into. The least common multiple (LCM) of 2, 16, and 8 is 16.

3. Convert each fraction so that they all have this common denominator (LCD = 16).

- For \( \frac{1}{2} \):
[tex]\[ \frac{1}{2} = \frac{1 \times 8}{2 \times 8} = \frac{8}{16} \][/tex]
- For \( \frac{3}{16} \):
[tex]\[ \frac{3}{16} = \frac{3}{16} \quad (\text{already has the denominator 16}) \][/tex]

- For \( \frac{7}{8} \):
[tex]\[ \frac{7}{8} = \frac{7 \times 2}{8 \times 2} = \frac{14}{16} \][/tex]

4. The fractions with the common denominator 16 are:
[tex]\[ \frac{8}{16}, \frac{3}{16}, \frac{14}{16} \][/tex]

So, the correct answer is:

C. [tex]\(\frac{8}{16}, \frac{3}{16}, \frac{14}{16}\)[/tex]