If [tex]$\phi \in[tex]$ IVC[/tex] and [tex]$[/tex]\cos^2 \phi = \frac{1}{2}$[/tex], calculate:

[tex]G = \operatorname{tg} \phi + \operatorname{ctg} \phi[/tex]

A) 1
B) 2
C) -2
D) -1
E) 0



Answer :

Dado que \(\phi\) se encuentra en el cuarto cuadrante (IVC) y se nos da \(\cos^2(\phi) = \frac{1}{2}\), procedemos a calcular \(G = \tan(\phi) + \cot(\phi)\).

1. Calcular \(\cos(\phi)\):

Sabemos que \(\cos^2(\phi) = \frac{1}{2}\), entonces:

[tex]\[ \cos(\phi) = \pm \sqrt{\frac{1}{2}} = \pm \frac{\sqrt{2}}{2} \][/tex]

En el cuarto cuadrante, \(\cos(\phi)\) es positivo. Por lo tanto:

[tex]\[ \cos(\phi) = \frac{\sqrt{2}}{2} \][/tex]

2. Calcular \(\sin(\phi)\):

Utilizamos la identidad pitagórica \(\sin^2(\phi) + \cos^2(\phi) = 1\). Sustituimos \(\cos^2(\phi)\):

[tex]\[ \sin^2(\phi) = 1 - \cos^2(\phi) = 1 - \frac{1}{2} = \frac{1}{2} \][/tex]

Por lo tanto:

[tex]\[ \sin(\phi) = \pm \sqrt{\frac{1}{2}} = \pm \frac{\sqrt{2}}{2} \][/tex]

En el cuarto cuadrante, \(\sin(\phi)\) es negativo, así que:

[tex]\[ \sin(\phi) = -\frac{\sqrt{2}}{2} \][/tex]

3. Calcular \(\tan(\phi)\):

Sabemos que \(\tan(\phi) = \frac{\sin(\phi)}{\cos(\phi)}\). Sustituimos los valores encontrados:

[tex]\[ \tan(\phi) = \frac{-\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = -1 \][/tex]

4. Calcular \(\cot(\phi)\):

Sabemos que \(\cot(\phi) = \frac{1}{\tan(\phi)}\). Entonces:

[tex]\[ \cot(\phi) = \frac{1}{-1} = -1 \][/tex]

5. Calcular \(G\):

Finalmente calculamos \(G = \tan(\phi) + \cot(\phi)\):

[tex]\[ G = -1 + (-1) = -2 \][/tex]

Por lo tanto, la respuesta es:

[tex]\[ \boxed{-2} \][/tex]