Answer :

Sure! Let's solve the given expression step by step:

The expression we need to solve is:

[tex]\[ \left(\frac{3}{2}\right)^{-2} + \left(\frac{25}{81}\right)^{0.5} + \left(\frac{1}{16}\right)^{-1/4} \][/tex]

1. Calculate the first term:

[tex]\[ \left(\frac{3}{2}\right)^{-2} \][/tex]

To deal with the negative exponent, we can rewrite this as the reciprocal:

[tex]\[ \left(\frac{3}{2}\right)^{-2} = \left(\frac{2}{3}\right)^2 = \frac{2^2}{3^2} = \frac{4}{9} \][/tex]

[tex]\[ \left(\frac{4}{9}\right) \approx 0.4444444444444444 \][/tex]

2. Calculate the second term:

[tex]\[ \left(\frac{25}{81}\right)^{0.5} \][/tex]

The exponent \(0.5\) is equivalent to taking the square root:

[tex]\[ \left(\frac{25}{81}\right)^{0.5} = \sqrt{\frac{25}{81}} = \frac{\sqrt{25}}{\sqrt{81}} = \frac{5}{9} \][/tex]

[tex]\[ \left(\frac{5}{9}\right) \approx 0.5555555555555556 \][/tex]

3. Calculate the third term:

[tex]\[ \left(\frac{1}{16}\right)^{-1/4} \][/tex]

A negative exponent means taking the reciprocal, and \(1/4\) is the fourth root:

[tex]\[ \left(\frac{1}{16}\right)^{-1/4} = \left(\frac{16}{1}\right)^{1/4} = 16^{1/4} \][/tex]

The fourth root of 16 is:

[tex]\[ 16^{1/4} = 2 \][/tex]

4. Sum the terms:

Now add all of the terms together:

[tex]\[ 0.4444444444444444 + 0.5555555555555556 + 2 = 3 \][/tex]

So, the value of the given expression is:

[tex]\[ \boxed{3} \][/tex]