Find the value of [tex]$x[tex]$[/tex] if [tex]$[/tex]A, B[tex]$[/tex], and [tex]$[/tex]C[tex]$[/tex] are collinear points and [tex]$[/tex]B[tex]$[/tex] is between [tex]$[/tex]A[tex]$[/tex] and [tex]$[/tex]C$[/tex].

Given:
[tex]$AB = 2x$[/tex]
[tex]$BC = x - 2$[/tex]
[tex]$AC = 28$[/tex]

A. 7
B. 12
C. 10
D. 14



Answer :

To find the value of \( x \) given the points \( A, B, \) and \( C \) are collinear with \( B \) between \( A \) and \( C \) and the distances \( AB = 2x \), \( BC = x - 2 \), and \( AC = 28 \), follow these steps:

1. Set Up the Equation:
Since points \( A \), \( B \), and \( C \) are collinear and \( B \) is between \( A \) and \( C \), the total distance from \( A \) to \( C \) is the sum of the distances from \( A \) to \( B \) and from \( B \) to \( C \).

[tex]\[ AB + BC = AC \][/tex]

Substitute the given distances:

[tex]\[ 2x + (x - 2) = 28 \][/tex]

2. Combine Like Terms:
Combine the \( x \) terms on the left-hand side of the equation:

[tex]\[ 2x + x - 2 = 28 \][/tex]

[tex]\[ 3x - 2 = 28 \][/tex]

3. Solve for \( x \):
Isolate \( x \) by adding 2 to both sides of the equation:

[tex]\[ 3x - 2 + 2 = 28 + 2 \][/tex]

[tex]\[ 3x = 30 \][/tex]

Now, divide by 3:

[tex]\[ x = \frac{30}{3} \][/tex]

[tex]\[ x = 10 \][/tex]

So, the value of [tex]\( x \)[/tex] is [tex]\(\boxed{10}\)[/tex].