Sure, let's solve the given problem step by step.
Given values:
[tex]\[
\sqrt{2} = 1.414 \quad \text{and} \quad \pi = 3.141
\][/tex]
We need to evaluate the expression:
[tex]\[
\frac{1}{\sqrt{2}} + \pi
\][/tex]
First, we need to calculate \(\frac{1}{\sqrt{2}}\) using the given value for \(\sqrt{2}\):
[tex]\[
\frac{1}{\sqrt{2}} = \frac{1}{1.414}
\][/tex]
Dividing 1 by 1.414:
[tex]\[
\frac{1}{1.414} \approx 0.707
\][/tex]
Next, we add the value of \(\pi\) to this result:
[tex]\[
0.707 + 3.141
\][/tex]
Adding these values together:
[tex]\[
0.707 + 3.141 = 3.848
\][/tex]
Therefore, the value of the expression \(\frac{1}{\sqrt{2}} + \pi\) rounded to three decimal places is:
[tex]\[
\boxed{3.848}
\][/tex]