Certainly! Let's go through the problem step-by-step to verify the given expressions for \( a = 8 \), \( b = 4 \), and \( c = 2 \).
1. Calculate \( a \div (b + c) \):
- First, we need to compute \( b + c \):
[tex]\[
b + c = 4 + 2 = 6
\][/tex]
- Now, we need to divide \( a \) by this sum:
[tex]\[
a \div (b + c) = \frac{8}{6} = 1.3333333333333333
\][/tex]
2. Calculate \( (a + b) + (a + c) \):
- First, compute \( a + b \):
[tex]\[
a + b = 8 + 4 = 12
\][/tex]
- Next, compute \( a + c \):
[tex]\[
a + c = 8 + 2 = 10
\][/tex]
- Finally, add these two results together:
[tex]\[
(a + b) + (a + c) = 12 + 10 = 22
\][/tex]
So, by our calculations, we have:
1. \( a \div (b + c) = 1.3333333333333333 \)
2. \( (a + b) + (a + c) = 22 \)
The results we calculated match the given results, confirming our calculations are correct.