Answer :

Let's solve the equation \(_{30}P_r = 21 \times _{30}P_{r-1}\) for \(r\).

We know that the permutation formula is given by:

[tex]\[ _{n}P_r = \frac{n!}{(n-r)!} \][/tex]

Substituting \(n = 30\), the equation becomes:

[tex]\[ _{30}P_r = \frac{30!}{(30-r)!} \][/tex]
and
[tex]\[ _{30}P_{r-1} = \frac{30!}{(30-(r-1))!} = \frac{30!}{(31-r)!} \][/tex]

Given the original equation \(_{30}P_r = 21 \times _{30}P_{r-1}\), we can substitute these values in:

[tex]\[ \frac{30!}{(30-r)!} = 21 \times \frac{30!}{(31-r)!} \][/tex]

To simplify, we can cancel the \(30!\) from both sides, as it is a common factor:

[tex]\[ \frac{1}{(30-r)!} = 21 \times \frac{1}{(31-r)!} \][/tex]

This simplifies to:

[tex]\[ \frac{1}{(30-r)!} = \frac{21}{(31-r)!} \][/tex]

Next, we cross-multiply to clear the fractions:

[tex]\[ (31-r)! = 21 \times (30-r)! \][/tex]

Recall that \((31-r)!\) can be expanded as:

[tex]\[ (31-r)! = (31-r) \times (30-r)! \][/tex]

Thus, the equation becomes:

[tex]\[ (31-r) \times (30-r)! = 21 \times (30-r)! \][/tex]

Since \((30-r)!\) is a common factor on both sides, we can cancel it out:

[tex]\[ 31-r = 21 \][/tex]

Solving for \(r\):

[tex]\[ 31 - r = 21 \][/tex]
[tex]\[ r = 31 - 21 \][/tex]
[tex]\[ r = 10 \][/tex]

Therefore, the value of [tex]\(r\)[/tex] is [tex]\(10\)[/tex].