Answer :

Sure, let's solve the expression \(\frac{4r - t + s}{2}\) step-by-step given that \( r = 4 \), \( t = 1 \), and \( s = 2 \).

1. Substitute the given values into the expression:

[tex]\[ \frac{4r - t + s}{2} \rightarrow \frac{4 \cdot 4 - 1 + 2}{2} \][/tex]

2. Calculate the value inside the numerator first:

\( 4 \cdot 4 = 16 \)

So the expression now is:

[tex]\[ \frac{16 - 1 + 2}{2} \][/tex]

3. Perform the subtraction and addition in the numerator:

\( 16 - 1 = 15 \)

\( 15 + 2 = 17 \)

Now the expression is:

[tex]\[ \frac{17}{2} \][/tex]

4. Finally, perform the division:

[tex]\[ \frac{17}{2} = 8.5 \][/tex]

So, the value of [tex]\(\frac{4r - t + s}{2}\)[/tex] when [tex]\( r = 4 \)[/tex], [tex]\( t = 1 \)[/tex], and [tex]\( s = 2 \)[/tex] is [tex]\( 8.5 \)[/tex].