Sure, let's solve the expression \(\frac{4r - t + s}{2}\) step-by-step given that \( r = 4 \), \( t = 1 \), and \( s = 2 \).
1. Substitute the given values into the expression:
[tex]\[
\frac{4r - t + s}{2} \rightarrow \frac{4 \cdot 4 - 1 + 2}{2}
\][/tex]
2. Calculate the value inside the numerator first:
\( 4 \cdot 4 = 16 \)
So the expression now is:
[tex]\[
\frac{16 - 1 + 2}{2}
\][/tex]
3. Perform the subtraction and addition in the numerator:
\( 16 - 1 = 15 \)
\( 15 + 2 = 17 \)
Now the expression is:
[tex]\[
\frac{17}{2}
\][/tex]
4. Finally, perform the division:
[tex]\[
\frac{17}{2} = 8.5
\][/tex]
So, the value of [tex]\(\frac{4r - t + s}{2}\)[/tex] when [tex]\( r = 4 \)[/tex], [tex]\( t = 1 \)[/tex], and [tex]\( s = 2 \)[/tex] is [tex]\( 8.5 \)[/tex].