Subtract the like terms to find [tex]f(x) - g(x)[/tex].

If [tex]f(x) = 3x^2 - 4x + 5[/tex] and [tex]g(x) = 2x^2 + 2[/tex], find [tex]f(x) - g(x)[/tex].

A. [tex]5x^2 - 4x + 7[/tex]
B. [tex]x^2 - 4x + 3[/tex]
C. [tex]-x^2 + 4x - 3[/tex]
D. [tex]x^2 - 4x + 7[/tex]



Answer :

To find \( f(x) - g(x) \) where \( f(x) = 3x^2 - 4x + 5 \) and \( g(x) = 2x^2 + 2 \), follow these steps:

1. Arrange the expressions for \( f(x) \) and \( g(x) \):
[tex]\[ f(x) = 3x^2 - 4x + 5 \][/tex]
[tex]\[ g(x) = 2x^2 + 2 \][/tex]

2. Subtract the like terms of \( f(x) \) and \( g(x) \):
- \( x^2 \) terms: \( 3x^2 - 2x^2 = 1x^2 \)
- \( x \) terms: \( -4x \)
- Constant terms: \( 5 - 2 = 3 \)

3. Combine the results from step 2 to form the polynomial \( f(x) - g(x) \):
[tex]\[ f(x) - g(x) = 1x^2 - 4x + 3 \][/tex]

So, \( f(x) - g(x) \) is:

[tex]\[ \boxed{x^2 - 4x + 3} \][/tex]

Checking the choices:
A. \( 5x^2 - 4x + 7 \)
B. \( x^2 - 4x + 3 \)
C. \( -x^2 + 4x - 3 \)
D. \( x^2 - 4x + 7 \)

Thus, the correct answer is option [tex]\( \boxed{B} \)[/tex].