The volumes of two similar solids are [tex]210 \, m^3[/tex] and [tex]1,680 \, m^3[/tex]. The surface area of the larger solid is [tex]856 \, m^2[/tex]. What is the surface area of the smaller solid?

A. [tex]107 \, m^2[/tex]
B. [tex]214 \, m^2[/tex]
C. [tex]1,034 \, m^2[/tex]
D. [tex]6,848 \, m^2[/tex]



Answer :

To determine the surface area of the smaller solid, we can use the properties of similar solids. Here’s the step-by-step solution:

1. Determine the Ratio of the Volumes:
Given the volumes of the two similar solids, we have:

[tex]\[ \text{Volume of smaller solid} = 210 \, \text{m}^3 \][/tex]
[tex]\[ \text{Volume of larger solid} = 1,680 \, \text{m}^3 \][/tex]

The ratio of the volumes can be determined using the formula for the ratio of similar solids:

[tex]\[ \text{Ratio of volumes} = \left( \frac{\text{volume of smaller solid}}{\text{volume of larger solid}} \right)^{1/3} \][/tex]

[tex]\[ \text{Ratio of volumes} = \left( \frac{210}{1680} \right)^{1/3} \][/tex]

Simplifying inside the parentheses:

[tex]\[ \frac{210}{1680} = \frac{1}{8} \][/tex]

Thus:

[tex]\[ \left( \frac{1}{8} \right)^{1/3} = 0.5 \][/tex]

So, the ratio of the side lengths of the similar solids is \( 0.5 \)

2. Determine the Ratio of the Surface Areas:
Since the surface area ratio is the square of the ratio of the sides:

[tex]\[ \text{Ratio of surface areas} = (0.5)^2 = 0.25 \][/tex]

3. Calculate the Surface Area of the Smaller Solid:
We know the surface area of the larger solid:

[tex]\[ \text{Surface area of larger solid} = 856 \, \text{m}^2 \][/tex]

Therefore, we can calculate the surface area of the smaller solid using the ratio of the surface areas:

[tex]\[ \text{Surface area of smaller solid} = \text{Surface area of larger solid} \times 0.25 \][/tex]

[tex]\[ \text{Surface area of smaller solid} = 856 \times 0.25 = 214 \, \text{m}^2 \][/tex]

Hence, the surface area of the smaller solid is \( 214 \, \text{m}^2 \).

Among the given options, the correct answer is:
[tex]\[ \boxed{214 \, \text{m}^2} \][/tex]