Answer :

To solve the expression \( x^2 - 2xy + y^2 \) when \( x = 3 \) and \( y = 2 \), we need to substitute the given values into the expression and simplify step by step.

1. Substitute \( x = 3 \) and \( y = 2 \) into the expression:

[tex]\[ (3)^2 - 2 \cdot (3) \cdot (2) + (2)^2 \][/tex]

2. Calculate \( (3)^2 \):

[tex]\[ (3)^2 = 9 \][/tex]

3. Calculate \( 2 \cdot (3) \cdot (2) \):

[tex]\[ 2 \cdot 3 \cdot 2 = 12 \][/tex]

4. Calculate \( (2)^2 \):

[tex]\[ (2)^2 = 4 \][/tex]

5. Substitute these values back into the expression:

[tex]\[ 9 - 12 + 4 \][/tex]

6. Perform the subtraction and addition operations:

[tex]\[ 9 - 12 = -3 \][/tex]

7. Then,

[tex]\[ -3 + 4 = 1 \][/tex]

Therefore, the result of the expression [tex]\( x^2 - 2xy + y^2 \)[/tex] when [tex]\( x = 3 \)[/tex] and [tex]\( y = 2 \)[/tex] is [tex]\( 1 \)[/tex].