Answer :
To evaluate the formula for \( V = \frac{B h}{3} \) given \( B = 7 \, \text{cm}^2 \) and \( h = 9 \, \text{cm} \), follow these steps:
1. Identify the given values:
- \( B = 7 \, \text{cm}^2 \)
- \( h = 9 \, \text{cm} \)
2. Substitute the given values into the formula:
[tex]\[ V = \frac{B h}{3} \][/tex]
[tex]\[ V = \frac{7 \, \text{cm}^2 \times 9 \, \text{cm}}{3} \][/tex]
3. Perform the multiplication inside the numerator:
[tex]\[ 7 \, \text{cm}^2 \times 9 \, \text{cm} = 63 \, \text{cm}^3 \][/tex]
4. Divide the result by 3:
[tex]\[ V = \frac{63 \, \text{cm}^3}{3} = 21 \, \text{cm}^3 \][/tex]
After going through these steps, we find that the volume \( V \) is \( 21 \, \text{cm}^3 \).
So, the correct answer is:
A. [tex]\( 21 \, \text{cm}^3 \)[/tex]
1. Identify the given values:
- \( B = 7 \, \text{cm}^2 \)
- \( h = 9 \, \text{cm} \)
2. Substitute the given values into the formula:
[tex]\[ V = \frac{B h}{3} \][/tex]
[tex]\[ V = \frac{7 \, \text{cm}^2 \times 9 \, \text{cm}}{3} \][/tex]
3. Perform the multiplication inside the numerator:
[tex]\[ 7 \, \text{cm}^2 \times 9 \, \text{cm} = 63 \, \text{cm}^3 \][/tex]
4. Divide the result by 3:
[tex]\[ V = \frac{63 \, \text{cm}^3}{3} = 21 \, \text{cm}^3 \][/tex]
After going through these steps, we find that the volume \( V \) is \( 21 \, \text{cm}^3 \).
So, the correct answer is:
A. [tex]\( 21 \, \text{cm}^3 \)[/tex]