Evaluate the formula [tex] V = \frac{Bh}{3} [/tex] for [tex] B = 7 \, \text{cm}^2 [/tex] and [tex] h = 9 \, \text{cm} [/tex].

A. [tex] 21 \, \text{cm}^3 [/tex]
B. [tex] 60 \, \text{cm}^3 [/tex]
C. [tex] 5.3 \, \text{cm}^3 [/tex]
D. [tex] 12 \, \text{cm}^3 [/tex]



Answer :

To evaluate the formula for \( V = \frac{B h}{3} \) given \( B = 7 \, \text{cm}^2 \) and \( h = 9 \, \text{cm} \), follow these steps:

1. Identify the given values:
- \( B = 7 \, \text{cm}^2 \)
- \( h = 9 \, \text{cm} \)

2. Substitute the given values into the formula:
[tex]\[ V = \frac{B h}{3} \][/tex]
[tex]\[ V = \frac{7 \, \text{cm}^2 \times 9 \, \text{cm}}{3} \][/tex]

3. Perform the multiplication inside the numerator:
[tex]\[ 7 \, \text{cm}^2 \times 9 \, \text{cm} = 63 \, \text{cm}^3 \][/tex]

4. Divide the result by 3:
[tex]\[ V = \frac{63 \, \text{cm}^3}{3} = 21 \, \text{cm}^3 \][/tex]

After going through these steps, we find that the volume \( V \) is \( 21 \, \text{cm}^3 \).

So, the correct answer is:

A. [tex]\( 21 \, \text{cm}^3 \)[/tex]