What is the simplest form of this expression?

[tex]\[ (2x - 3)(3x^2 + 2x - 1) \][/tex]

A. [tex]\[ 6x^3 - 9x^2 - 4x + 3 \][/tex]

B. [tex]\[ 6x^3 - 5x^2 - 8x + 3 \][/tex]

C. [tex]\[ 6x^3 - 2x^2 - 8x + 3 \][/tex]

D. [tex]\[ 6x^3 - 5x^2 - 6x + 2 \][/tex]



Answer :

To find the simplest form of the expression \((2x - 3)(3x^2 + 2x - 1)\), we'll perform polynomial multiplication. Let's break it down step-by-step.

Given:
[tex]\[ (2x - 3)(3x^2 + 2x - 1) \][/tex]

First, distribute \(2x\) across the second polynomial:
[tex]\[ 2x \cdot (3x^2 + 2x - 1) = 2x \cdot 3x^2 + 2x \cdot 2x + 2x \cdot (-1) = 6x^3 + 4x^2 - 2x \][/tex]

Next, distribute \(-3\) across the second polynomial:
[tex]\[ -3 \cdot (3x^2 + 2x - 1) = -3 \cdot 3x^2 + -3 \cdot 2x + -3 \cdot (-1) = -9x^2 - 6x + 3 \][/tex]

Now, combine these results:
[tex]\[ 6x^3 + 4x^2 - 2x - 9x^2 - 6x + 3 \][/tex]

Combine like terms:
[tex]\[ 6x^3 + (4x^2 - 9x^2) + (-2x - 6x) + 3 = 6x^3 - 5x^2 - 8x + 3 \][/tex]

Thus, the simplest form of the expression is:
[tex]\[ \boxed{6x^3 - 5x^2 - 8x + 3} \][/tex]

This corresponds to option B.