\begin{tabular}{|c|c|c|c|c|c|}
\hline
\begin{tabular}{l}
Number of \\
washers
\end{tabular} & Trial & \multicolumn{2}{|c|}{\begin{tabular}{l}
Time to travel [tex]$0.25 m$[/tex] \\
[tex]$t_1( s )$[/tex]
\end{tabular}} & \multicolumn{2}{|c|}{\begin{tabular}{l}
Time to travel [tex]$0.50 m$[/tex] \\
[tex]$t_2$[/tex] (s)
\end{tabular}} \\
\hline
\multirow{3}{}{\begin{tabular}{l}
1 washer mass [tex]$=$[/tex] \\
[tex]$4.9 g$[/tex]
\end{tabular}} & Trial \#1 & 2.24 & \multirow{3}{
}{\begin{tabular}{l}
Average \\
2.23
\end{tabular}} & 3.16 & \multirow{3}{*}{\begin{tabular}{l}
Average \\
3.13
\end{tabular}} \\
\hline
& Trial \#2 & 2.21 & & 3.08 & \\
\hline
& Trial \#3 & 2.23 & & 3.15 & \\
\hline
\end{tabular}

What is the average velocity of the car over the first [tex]$0.25 m$[/tex]? [tex]$\square \, m / s$[/tex]

What is the average velocity of the car over the second [tex]$0.25 m$[/tex]? [tex]$\square \, m / s$[/tex]



Answer :

Let's break down the problem step by step.

### Given Data
1. Distance traveled over the first part: \( 0.25 \, \text{m} \).
2. Distance traveled over the second part: \( 0.25 \, \text{m} \).
3. Average time to travel \( 0.25 \, \text{m} \): \( 2.23 \, \text{s} \).
4. Average time to travel \( 0.50 \, \text{m} \): \( 3.13 \, \text{s} \).

### Calculations

#### 1. Average velocity over the first 0.25 m

The average velocity \( v_1 \) can be calculated using the formula:
[tex]\[ v_1 = \frac{\text{distance}}{\text{time}} \][/tex]

Substitute the given values:
[tex]\[ v_1 = \frac{0.25 \, \text{m}}{2.23 \, \text{s}} \][/tex]

Therefore,
[tex]\[ v_1 \approx 0.112108 \, \text{m/s} \][/tex]

#### 2. Average velocity over the second 0.25 m

Firstly, let's calculate the time taken to travel the second 0.25 m.
[tex]\[ t_{\text{second } 0.25 \, \text{m}} = \text{total time for } 0.50 \, \text{m} - \text{time for first } 0.25 \, \text{m} \][/tex]
[tex]\[ t_{\text{second } 0.25 \, \text{m}} = 3.13 \, \text{s} - 2.23 \, \text{s} \][/tex]
[tex]\[ t_{\text{second } 0.25 \, \text{m}} = 0.90 \, \text{s} \][/tex]

Now we can calculate the average velocity \( v_2 \) over the second 0.25 m:
[tex]\[ v_2 = \frac{0.25 \, \text{m}}{0.90 \, \text{s}} \][/tex]

So,
[tex]\[ v_2 \approx 0.277778 \, \text{m/s} \][/tex]

### Summary

- The average velocity of the car over the first 0.25 m: \( 0.112108 \, \text{m/s} \).
- The average velocity of the car over the second 0.25 m: [tex]\( 0.277778 \, \text{m/s} \)[/tex].