Certainly! To find the volume \( V \) using the given formula and values, follow these steps:
1. Identify the given values:
- Base area \( B = 9 \, \text{in}^2 \)
- Height \( h = 32 \, \text{in} \)
2. Write down the formula for the volume \( V \):
[tex]\[
V = \frac{B h}{3}
\][/tex]
3. Substitute the given values \( B \) and \( h \) into the formula:
[tex]\[
V = \frac{9 \, \text{in}^2 \times 32 \, \text{in}}{3}
\][/tex]
4. Perform the multiplication first:
[tex]\[
9 \, \text{in}^2 \times 32 \, \text{in} = 288 \, \text{in}^3
\][/tex]
5. Now, divide the product by 3:
[tex]\[
V = \frac{288 \, \text{in}^3}{3} = 96 \, \text{in}^3
\][/tex]
Therefore, the volume \( V \) is \( 96 \, \text{in}^3 \).
The correct answer is:
[tex]\[
96 \, \text{in}^3
\][/tex]