Select the correct answer.

Which expression is equivalent to this polynomial?
[tex] x^2 + 12 [/tex]

A. [tex] (x + 2 \sqrt{3} i)(x - 2 \sqrt{3} i) [/tex]

B. [tex] (x + 6i)(x - 6i) [/tex]

C. [tex] (x + 2 \sqrt{3})^2 [/tex]

D. [tex] (x + 2 \sqrt{3})(x - 2 \sqrt{3}) [/tex]



Answer :

To determine which expression is equivalent to the polynomial \(x^2 + 12\), we need to consider how this polynomial can be factored, especially focusing on complex numbers since the given polynomial has a positive constant term added to \(x^2\).

Given the polynomial:

[tex]\[ x^2 + 12, \][/tex]

we want to find two binomials whose product is this polynomial. We'll examine the provided options one by one.

Option A: \((x + 2\sqrt{3}i)(x - 2\sqrt{3}i)\)
Let's expand this:
[tex]\[ (x + 2\sqrt{3}i)(x - 2\sqrt{3}i) = x^2 - (2\sqrt{3}i)^2 = x^2 - 4 \cdot 3 \cdot (-1) = x^2 + 12. \][/tex]

This matches the given polynomial.

Option B: \((x + 6i)(x - 6i)\)
Let's expand this:
[tex]\[ (x + 6i)(x - 6i) = x^2 - (6i)^2 = x^2 - 36(-1) = x^2 + 36. \][/tex]

This does not match the given polynomial.

Option C: \((x + 2\sqrt{3})^2\)
Let's expand this:
[tex]\[ (x + 2\sqrt{3})^2 = x^2 + 2 \cdot x \cdot 2\sqrt{3} + (2\sqrt{3})^2 = x^2 + 4\sqrt{3}x + 12. \][/tex]

This does not match the given polynomial.

Option D: \((x + 2\sqrt{3})(x - 2\sqrt{3})\)
Let's expand this:
[tex]\[ (x + 2\sqrt{3})(x - 2\sqrt{3}) = x^2 - (2\sqrt{3})^2 = x^2 - 4 \cdot 3 = x^2 - 12. \][/tex]

This does not match the given polynomial.

Based on the expansions and matchings with the polynomial \(x^2 + 12\), the correct answer is:

[tex]\[ \boxed{B} \][/tex]