Find the inverse function for:

[tex]\[ f(x) = -4x + 12 \][/tex]

Reduce your answer.

[tex]\[ f^{-1}(x) = -\frac{x}{4} + 3 \][/tex]



Answer :

To find the inverse of the function \( f(x) = -4x + 12 \), we need to follow a series of steps. Let's go through them one by one.

1. Step 1: Start by expressing \( f(x) \) as \( y \):
[tex]\[ y = -4x + 12 \][/tex]

2. Step 2: Swap \( x \) and \( y \):
[tex]\[ x = -4y + 12 \][/tex]

3. Step 3: Solve for \( y \) in terms of \( x \):
- First, isolate the term involving \( y \) by subtracting 12 from both sides:
[tex]\[ x - 12 = -4y \][/tex]

- Next, divide both sides by \(-4\):
[tex]\[ y = \frac{x - 12}{-4} \][/tex]

- Simplify the fraction:
[tex]\[ y = -\frac{x}{4} + \frac{12}{4} \][/tex]

- Further simplification gives:
[tex]\[ y = -\frac{x}{4} + 3 \][/tex]

4. Step 4: Replace \( y \) with \( f^{-1}(x) \):
[tex]\[ f^{-1}(x) = -\frac{x}{4} + 3 \][/tex]

So, the inverse function \( f^{-1}(x) \) is:
[tex]\[ f^{-1}(x) = -\frac{x}{4} + 3 \][/tex]

To fit it into the format:
[tex]\[ f^{-1}(x) = -\frac{x}{[4]} + [3] \][/tex]

The denominator is 4, and the constant is 3. Therefore, the values to fill in are:
[tex]\[ 4 \text{ and } 3 \][/tex]

Hence, the answer is:
[tex]\[ f^{-1}(x) = -\frac{x}{4} + 3 \][/tex]