Simplify [tex]$\frac{b^2+b}{b^3-2b}$[/tex].

A. [tex]$\frac{b+1}{b^2-2}$[/tex]
B. [tex]$b^2$[/tex]
C. [tex]$\frac{1}{b-2}$[/tex]
D. [tex]$\frac{b}{b^2-2}$[/tex]



Answer :

To simplify the given expression \(\frac{b^2+b}{b^3-2b}\), we should start by factoring both the numerator and the denominator where possible.

Step 1: Factor the numerator and the denominator

The numerator is \(b^2 + b\):

[tex]\[ b^2 + b = b(b + 1) \][/tex]

Now, for the denominator \(b^3 - 2b\):

[tex]\[ b^3 - 2b = b(b^2 - 2) \][/tex]

Thus, the expression becomes:

[tex]\[ \frac{b(b + 1)}{b(b^2 - 2)} \][/tex]

Step 2: Cancel out the common factor \(b\)

Since \(b\) is not equal to zero, we can cancel out \(b\) from the numerator and the denominator:

[tex]\[ \frac{b(b + 1)}{b(b^2 - 2)} = \frac{b + 1}{b^2 - 2} \][/tex]

So the simplified form of the given expression is:

[tex]\[ \frac{b+1}{b^2-2} \][/tex]

Step 3: Compare with the provided options

We compare our simplified result with the given choices:

A. \(\frac{b+1}{b^2-2}\)

B. \(b^2\)

C. \(\frac{1}{b-2}\)

D. \(\frac{b}{b^2-2}\)

From the comparison, it is clear that the correct option is:

A. [tex]\(\frac{b+1}{b^2-2}\)[/tex]