Type the correct answer in each box.

Find the solution to this system of equations.

[tex]\[
\begin{array}{l}
3x + 2y + 3z = 3 \\
4x - 5y + 7z = 1 \\
2x + 3y - 2z = 6
\end{array}
\][/tex]

[tex]\[
\begin{array}{l}
x = \\
y = \\
z =
\end{array}
\][/tex]



Answer :

To find the solution to the given system of equations:

[tex]\[ \begin{array}{l} 3x + 2y + 3z = 3 \\ 4x - 5y + 7z = 1 \\ 2x + 3y - 2z = 6 \end{array} \][/tex]

we solve for \( x \), \( y \), and \( z \).

The solution to the system of equations is:

[tex]\[ \begin{array}{l} x = 2.0 \\ y = 0.0 \\ z = -1.0 \end{array} \][/tex]

Thus, the answers are:

[tex]\[ \begin{array}{l} x = 2 \\ y = 0 \\ z = -1 \end{array} \][/tex]