What is the product?

[tex]\[
-9x(5 - 2x)
\][/tex]

A. \( 18x^2 - 45x \)
B. \( -18x^2 - 45x \)
C. \( -18x - 45x \)
D. [tex]\( 18x - 45x \)[/tex]



Answer :

Certainly! Let's work through the expression step-by-step to find the correct product.

Given expression:
[tex]\[ -9x(5 - 2x) \][/tex]

We will apply the distributive property, which involves multiplying each term inside the parentheses by the term outside the parentheses:

1. First term inside parentheses: \(5\)
[tex]\[ -9x \times 5 = -45x \][/tex]

2. Second term inside parentheses: \(-2x\)
[tex]\[ -9x \times (-2x) = 18x^2 \][/tex]

Now, combine the two terms we just calculated:
[tex]\[ 18x^2 - 45x \][/tex]

So, the product is:
[tex]\[ 18x^2 - 45x \][/tex]

Thus, the correct answer is:
[tex]\[ 18 x^2-45 x \][/tex]