Which expression is equivalent to [tex]$13 \sqrt{22b} - 10 \sqrt{22b}[tex]$[/tex], if [tex]$[/tex]b > 0$[/tex]?

A. [tex]$23 \sqrt{22b}$[/tex]
B. [tex]$130 \sqrt{22b}$[/tex]
C. [tex]$3 \sqrt{b^2}$[/tex]
D. [tex]$3 \sqrt{22b}$[/tex]



Answer :

To solve the expression \( 13 \sqrt{22 b} - 10 \sqrt{22 b} \), let's break it down step-by-step.

First, let's identify that both terms in the expression share the common factor \( \sqrt{22 b} \):

[tex]\[ 13 \sqrt{22 b} - 10 \sqrt{22 b} \][/tex]

This expression can be factored by pulling out the common term \( \sqrt{22 b} \):

[tex]\[ \left( 13 - 10 \right) \sqrt{22 b} \][/tex]

Next, we simplify the expression inside the parentheses:

[tex]\[ \left( 13 - 10 \right) = 3 \][/tex]

Substituting this back in gives:

[tex]\[ 3 \sqrt{22 b} \][/tex]

Thus, the simplified form of the given expression \( 13 \sqrt{22 b} - 10 \sqrt{22 b} \) is:

[tex]\[ 3 \sqrt{22 b} \][/tex]

Therefore, the equivalent expression to \( 13 \sqrt{22 b} - 10 \sqrt{22 b} \) is:

[tex]\[ \boxed{3 \sqrt{22 b}} \][/tex]

Hence, the correct answer is:

D. [tex]\( 3 \sqrt{22 b} \)[/tex]