The expression [tex]$x - y[tex]$[/tex] equals 0.7 if [tex]$[/tex]x[tex]$[/tex] and [tex]$[/tex]y[tex]$[/tex] have certain values. Evaluate the following expression with the same values of [tex]$[/tex]x[tex]$[/tex] and [tex]$[/tex]y$[/tex]:

[tex]$y - x$[/tex]



Answer :

To solve the given problem, let's start by considering the provided information that the expression \( x - y \) equals 0.7. So, we have the equation:
[tex]\[ x - y = 0.7 \][/tex]

We need to evaluate the expression \( y - x \). To do this, let's manipulate the original equation slightly. By subtracting \( x \) from both sides and rearranging, we get:
[tex]\[ x - y = 0.7 \][/tex]

Now, isolating \( y - x \) from this equation:
[tex]\[ y - x = -(x - y) \][/tex]

Since we know that \( x - y = 0.7 \), we substitute this value into our equation:
[tex]\[ y - x = -(0.7) \][/tex]

By simplifying, we find:
[tex]\[ y - x = -0.7 \][/tex]

Therefore, the value of the expression [tex]\( y - x \)[/tex] is [tex]\( -0.7 \)[/tex].