What is the value of [tex]$y[tex]$[/tex] in the equation [tex]$[/tex]5x + 2y = 20[tex]$[/tex], when [tex]$[/tex]x = 0.3$[/tex]?

A. 2.5
B. 2.8
C. 9.25
D. 10.75



Answer :

Let's start with the given equation and the provided value for \( x \):

[tex]\[ 5x + 2y = 20 \][/tex]

Given:

[tex]\[ x = 0.3 \][/tex]

First, substitute \( x = 0.3 \) into the equation:

[tex]\[ 5(0.3) + 2y = 20 \][/tex]

Now, perform the multiplication:

[tex]\[ 1.5 + 2y = 20 \][/tex]

Next, isolate \( 2y \) by subtracting 1.5 from both sides of the equation:

[tex]\[ 2y = 20 - 1.5 \][/tex]

Simplify the subtraction:

[tex]\[ 2y = 18.5 \][/tex]

Finally, solve for \( y \) by dividing both sides by 2:

[tex]\[ y = \frac{18.5}{2} = 9.25 \][/tex]

Therefore, the value of \( y \) when \( x = 0.3 \) is \( 9.25 \).

So, the correct answer is:

[tex]\[ y = 9.25 \][/tex]