What is the value of [tex]$x[tex]$[/tex] in the equation [tex]$[/tex]4x + 8y = 40[tex]$[/tex], when [tex]$[/tex]y = 0.8$[/tex]?

A. 4.6
B. 8.4
C. 10
D. 12



Answer :

To find the value of \( x \) in the equation \( 4x + 8y = 40 \) when \( y = 0.8 \), we can follow these steps:

1. Substitute \( y \) with 0.8 in the equation:
[tex]\[ 4x + 8(0.8) = 40 \][/tex]

2. Multiply 8 by 0.8:
[tex]\[ 8 \times 0.8 = 6.4 \][/tex]

3. Substitute the result back into the equation:
[tex]\[ 4x + 6.4 = 40 \][/tex]

4. Isolate the term involving \( x \) by subtracting 6.4 from both sides:
[tex]\[ 4x = 40 - 6.4 \][/tex]

5. Perform the subtraction on the right side:
[tex]\[ 40 - 6.4 = 33.6 \][/tex]

6. Now, we have:
[tex]\[ 4x = 33.6 \][/tex]

7. Solve for \( x \) by dividing both sides by 4:
[tex]\[ x = \frac{33.6}{4} \][/tex]

8. Perform the division:
[tex]\[ x = 8.4 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 8.4 \)[/tex]. So, the correct answer is [tex]\( 8.4 \)[/tex].