Answer :
Certainly! We need to complete the table for the equation \( d = 10c + 250 \). Below are the steps to find the values of \( d \) for the given \( c \) values.
1. Calculation for \( c = 10 \):
- Given \( c = 10 \), substitute \( c \) in the equation:
[tex]\[ d = 10 \cdot 10 + 250 \][/tex]
- Simplify it:
[tex]\[ d = 100 + 250 = 350 \][/tex]
- So, when \( c = 10 \), \( d = 350 \).
2. Calculation for \( c = 20 \):
- Given \( c = 20 \), substitute \( c \) in the equation:
[tex]\[ d = 10 \cdot 20 + 250 \][/tex]
- Simplify it:
[tex]\[ d = 200 + 250 = 450 \][/tex]
- So, when \( c = 20 \), \( d = 450 \).
3. Calculation for \( c = 30 \):
- Given \( c = 30 \), substitute \( c \) in the equation:
[tex]\[ d = 10 \cdot 30 + 250 \][/tex]
- Simplify it:
[tex]\[ d = 300 + 250 = 550 \][/tex]
- So, when \( c = 30 \), \( d = 550 \).
4. Calculation for \( c = 40 \):
- Given \( c = 40 \), substitute \( c \) in the equation:
[tex]\[ d = 10 \cdot 40 + 250 \][/tex]
- Simplify it:
[tex]\[ d = 400 + 250 = 650 \][/tex]
- So, when \( c = 40 \), \( d = 650 \).
Now, we can complete the table:
[tex]\[ \begin{tabular}{c|c} c & d \\ \hline 10 & 350 \\ 20 & 450 \\ 30 & 550 \\ 40 & 650 \\ \end{tabular} \][/tex]
1. Calculation for \( c = 10 \):
- Given \( c = 10 \), substitute \( c \) in the equation:
[tex]\[ d = 10 \cdot 10 + 250 \][/tex]
- Simplify it:
[tex]\[ d = 100 + 250 = 350 \][/tex]
- So, when \( c = 10 \), \( d = 350 \).
2. Calculation for \( c = 20 \):
- Given \( c = 20 \), substitute \( c \) in the equation:
[tex]\[ d = 10 \cdot 20 + 250 \][/tex]
- Simplify it:
[tex]\[ d = 200 + 250 = 450 \][/tex]
- So, when \( c = 20 \), \( d = 450 \).
3. Calculation for \( c = 30 \):
- Given \( c = 30 \), substitute \( c \) in the equation:
[tex]\[ d = 10 \cdot 30 + 250 \][/tex]
- Simplify it:
[tex]\[ d = 300 + 250 = 550 \][/tex]
- So, when \( c = 30 \), \( d = 550 \).
4. Calculation for \( c = 40 \):
- Given \( c = 40 \), substitute \( c \) in the equation:
[tex]\[ d = 10 \cdot 40 + 250 \][/tex]
- Simplify it:
[tex]\[ d = 400 + 250 = 650 \][/tex]
- So, when \( c = 40 \), \( d = 650 \).
Now, we can complete the table:
[tex]\[ \begin{tabular}{c|c} c & d \\ \hline 10 & 350 \\ 20 & 450 \\ 30 & 550 \\ 40 & 650 \\ \end{tabular} \][/tex]