Complete the table to graph the equation.

[tex]\[ 10c + 250 = d \][/tex]

\begin{tabular}{c|c}
[tex]$c$[/tex] & [tex]$d$[/tex] \\ \hline
10 & 350 \\
20 & [?] \\
30 & \\
40 &
\end{tabular}



Answer :

Certainly! We need to complete the table for the equation \( d = 10c + 250 \). Below are the steps to find the values of \( d \) for the given \( c \) values.

1. Calculation for \( c = 10 \):
- Given \( c = 10 \), substitute \( c \) in the equation:
[tex]\[ d = 10 \cdot 10 + 250 \][/tex]
- Simplify it:
[tex]\[ d = 100 + 250 = 350 \][/tex]
- So, when \( c = 10 \), \( d = 350 \).

2. Calculation for \( c = 20 \):
- Given \( c = 20 \), substitute \( c \) in the equation:
[tex]\[ d = 10 \cdot 20 + 250 \][/tex]
- Simplify it:
[tex]\[ d = 200 + 250 = 450 \][/tex]
- So, when \( c = 20 \), \( d = 450 \).

3. Calculation for \( c = 30 \):
- Given \( c = 30 \), substitute \( c \) in the equation:
[tex]\[ d = 10 \cdot 30 + 250 \][/tex]
- Simplify it:
[tex]\[ d = 300 + 250 = 550 \][/tex]
- So, when \( c = 30 \), \( d = 550 \).

4. Calculation for \( c = 40 \):
- Given \( c = 40 \), substitute \( c \) in the equation:
[tex]\[ d = 10 \cdot 40 + 250 \][/tex]
- Simplify it:
[tex]\[ d = 400 + 250 = 650 \][/tex]
- So, when \( c = 40 \), \( d = 650 \).

Now, we can complete the table:

[tex]\[ \begin{tabular}{c|c} c & d \\ \hline 10 & 350 \\ 20 & 450 \\ 30 & 550 \\ 40 & 650 \\ \end{tabular} \][/tex]