To find the capacitance of the capacitor, we can use the formula for capacitance:
[tex]\[ C = \frac{Q}{V} \][/tex]
Here, \( C \) is the capacitance, \( Q \) is the charge stored in the capacitor, and \( V \) is the potential difference applied across the plates.
Given:
- Charge, \( Q = 4.5 \times 10^{-3} \, \text{C} \)
- Potential difference, \( V = 950 \, \text{V} \)
We can substitute these values into the formula:
[tex]\[ C = \frac{4.5 \times 10^{-3}}{950} \][/tex]
When we compute this, we get:
[tex]\[ C = \frac{4.5 \times 10^{-3} \, \text{C}}{950 \, \text{V}} \approx 4.736842105263159 \times 10^{-6} \, \text{F} \][/tex]
It looks like the closest answer to our calculation is:
[tex]\[ 4.74 \times 10^{-6} \, \text{F} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{4.74 \times 10^{-6} \, \text{F}} \][/tex]