Answer :

Sure, let's simplify the expression \(\frac{z^{-8}}{z^{-7}}\) step by step and write the answer with a positive exponent.

1. Start with the given expression:

[tex]\[ \frac{z^{-8}}{z^{-7}} \][/tex]

2. Apply the laws of exponents:

When dividing powers with the same base, subtract the exponent of the denominator from the exponent of the numerator:

[tex]\[ \frac{z^{-8}}{z^{-7}} = z^{-8 - (-7)} \][/tex]

Simplify the exponent:

[tex]\[ -8 - (-7) = -8 + 7 = -1 \][/tex]

So the expression becomes:

[tex]\[ z^{-1} \][/tex]

3. Convert the result to a positive exponent:

Recall that \(z^{-1} = \frac{1}{z^1}\). Therefore, we can rewrite:

[tex]\[ z^{-1} = \frac{1}{z^1} \][/tex]

Putting it all together, the simplified expression with a positive exponent is:

[tex]\[ \frac{1}{z^1} \][/tex]

So, the answer is:

[tex]\[ \frac{1}{z} \][/tex]