Use a double-angle formula to make the required calculation.

Given:
[tex] \pi \ \textless \ t \ \textless \ \frac{3 \pi}{2}, \tan (t) = 7 [/tex]

Find [tex] \tan (2t) [/tex].

(Give an exact answer. Use symbolic notation and fractions where needed.)

[tex] \tan (2t) = \qquad \]



Answer :

Sure, let's find \(\tan(2t)\) using the double-angle formula for tangent. Given:

[tex]\[ \pi < t < \frac{3\pi}{2} \quad \text{and} \quad \tan(t) = 7 \][/tex]

We want to find \(\tan(2t)\). The double-angle formula for tangent is:

[tex]\[ \tan(2t) = \frac{2 \tan(t)}{1 - \tan^2(t)} \][/tex]

Substitute \(\tan(t) = 7\) into the formula:

[tex]\[ \tan(2t) = \frac{2 \cdot 7}{1 - 7^2} \][/tex]

Calculate the expressions in the numerator and the denominator:

[tex]\[ \tan(2t) = \frac{14}{1 - 49} \][/tex]

Simplify the denominator:

[tex]\[ \tan(2t) = \frac{14}{-48} \][/tex]

Simplify the fraction by dividing both the numerator and the denominator by their greatest common divisor, which is 2:

[tex]\[ \tan(2t) = \frac{14 \div 2}{-48 \div 2} = \frac{7}{-24} \][/tex]

Thus, the exact value is:

[tex]\[ \tan(2t) = -\frac{7}{24} \][/tex]