Answer :
Let’s carefully analyze the given table to answer the two questions.
Here’s the table with \( x \) and \( f(x) \) values:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|} \hline x & 0 & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 \\ \hline f(x) & 15 & 24 & 18 & 12 & 21 & 9 & 0 & 6 & 3 & 27 \\ \hline \end{array} \][/tex]
1. Evaluate \( f(6) \):
- To find \( f(6) \), we need to look at the value under \( f(x) \) where \( x = 6 \).
- From the table, when \( x = 6 \), \( f(x) = 18 \).
So, \( f(6) = 18 \).
2. Determine \( x \) when \( f(x) = 21 \):
- To find the value of \( x \) when \( f(x) = 21 \), we need to locate the \( x \) value corresponding to \( f(x) = 21 \).
- From the table, when \( f(x) = 21 \), the corresponding \( x \) value is \( 12 \).
Therefore, \( x = 12 \) when \( f(x) = 21 \).
Thus, the answers are:
[tex]\[ f(6) = 18, \, x = 12 \][/tex]
Here’s the table with \( x \) and \( f(x) \) values:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|} \hline x & 0 & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 \\ \hline f(x) & 15 & 24 & 18 & 12 & 21 & 9 & 0 & 6 & 3 & 27 \\ \hline \end{array} \][/tex]
1. Evaluate \( f(6) \):
- To find \( f(6) \), we need to look at the value under \( f(x) \) where \( x = 6 \).
- From the table, when \( x = 6 \), \( f(x) = 18 \).
So, \( f(6) = 18 \).
2. Determine \( x \) when \( f(x) = 21 \):
- To find the value of \( x \) when \( f(x) = 21 \), we need to locate the \( x \) value corresponding to \( f(x) = 21 \).
- From the table, when \( f(x) = 21 \), the corresponding \( x \) value is \( 12 \).
Therefore, \( x = 12 \) when \( f(x) = 21 \).
Thus, the answers are:
[tex]\[ f(6) = 18, \, x = 12 \][/tex]