Answer :

To find the value of \( p(x) + p(-x) \) given the function \( p(x) = x + 4 \), we'll follow these steps:

1. Determine \( p(x) \):
Given \( p(x) = x + 4 \).

2. Determine \( p(-x) \):
Substitute \( -x \) into the function:
[tex]\[ p(-x) = -x + 4 \][/tex]

3. Sum \( p(x) \) and \( p(-x) \):
Add the expressions for \( p(x) \) and \( p(-x) \):
[tex]\[ p(x) + p(-x) = (x + 4) + (-x + 4) \][/tex]

4. Simplify the expression:
Combine the terms inside the parentheses:
[tex]\[ (x + 4) + (-x + 4) = x + 4 - x + 4 \][/tex]
Notice that \( x \) and \( -x \) will cancel each other out:
[tex]\[ x - x + 4 + 4 = 0 + 8 = 8 \][/tex]

Thus, the sum \( p(x) + p(-x) \) simplifies to 8.

So, \( p(x) + p(-x) \) is:

[tex]\[ \boxed{8} \][/tex]