Answer :
Sure! Let's find the products step by step using suitable properties:
### Part (a)
[tex]\[ 26 \times (-48) + (-48) \times (-36) \][/tex]
1. Calculate \( 26 \times (-48) \):
[tex]\[ 26 \times (-48) = -1248 \][/tex]
2. Calculate \( (-48) \times (-36) \):
[tex]\[ (-48) \times (-36) = 1728 \][/tex]
3. Sum the results:
[tex]\[ -1248 + 1728 = 480 \][/tex]
### Part (b)
[tex]\[ 8 \times 53 \times (-125) \][/tex]
1. Multiply the numbers:
[tex]\[ 8 \times 53 \times (-125) = -53000 \][/tex]
### Part (c)
[tex]\[ 15 \times (-25) \times (-4) \times (-10) \][/tex]
1. Multiply the numbers in order:
[tex]\[ 15 \times (-25) = -375 \][/tex]
[tex]\[ -375 \times (-4) = 1500 \][/tex]
[tex]\[ 1500 \times (-10) = -15000 \][/tex]
### Part (d)
[tex]\[ (-41) \times 102 \][/tex]
1. Multiply the numbers:
[tex]\[ (-41) \times 102 = -4182 \][/tex]
### Part (e)
[tex]\[ 625 \times (-35) + (-625) \times 65 \][/tex]
1. Calculate \( 625 \times (-35) \):
[tex]\[ 625 \times (-35) = -21875 \][/tex]
2. Calculate \( (-625) \times 65 \):
[tex]\[ (-625) \times 65 = -40625 \][/tex]
3. Sum the results:
[tex]\[ -21875 + (-40625) = -62500 \][/tex]
### Part (f)
[tex]\[ 7 \times (50 - 2) \][/tex]
1. Calculate inside the parenthesis:
[tex]\[ 50 - 2 = 48 \][/tex]
2. Multiply the result by 7:
[tex]\[ 7 \times 48 = 336 \][/tex]
### Part (g)
[tex]\[ (-17) \times (-29) \][/tex]
1. Multiply the numbers:
[tex]\[ (-17) \times (-29) = 493 \][/tex]
### Part (h)
[tex]\[ (-57) \times (-19) + 57 \][/tex]
1. Calculate \( (-57) \times (-19) \):
[tex]\[ (-57) \times (-19) = 1083 \][/tex]
2. Add 57 to the result:
[tex]\[ 1083 + 57 = 1140 \][/tex]
So, the solutions are:
(a) 480
(b) -53000
(c) -15000
(d) -4182
(e) -62500
(f) 336
(g) 493
(h) 1140
### Part (a)
[tex]\[ 26 \times (-48) + (-48) \times (-36) \][/tex]
1. Calculate \( 26 \times (-48) \):
[tex]\[ 26 \times (-48) = -1248 \][/tex]
2. Calculate \( (-48) \times (-36) \):
[tex]\[ (-48) \times (-36) = 1728 \][/tex]
3. Sum the results:
[tex]\[ -1248 + 1728 = 480 \][/tex]
### Part (b)
[tex]\[ 8 \times 53 \times (-125) \][/tex]
1. Multiply the numbers:
[tex]\[ 8 \times 53 \times (-125) = -53000 \][/tex]
### Part (c)
[tex]\[ 15 \times (-25) \times (-4) \times (-10) \][/tex]
1. Multiply the numbers in order:
[tex]\[ 15 \times (-25) = -375 \][/tex]
[tex]\[ -375 \times (-4) = 1500 \][/tex]
[tex]\[ 1500 \times (-10) = -15000 \][/tex]
### Part (d)
[tex]\[ (-41) \times 102 \][/tex]
1. Multiply the numbers:
[tex]\[ (-41) \times 102 = -4182 \][/tex]
### Part (e)
[tex]\[ 625 \times (-35) + (-625) \times 65 \][/tex]
1. Calculate \( 625 \times (-35) \):
[tex]\[ 625 \times (-35) = -21875 \][/tex]
2. Calculate \( (-625) \times 65 \):
[tex]\[ (-625) \times 65 = -40625 \][/tex]
3. Sum the results:
[tex]\[ -21875 + (-40625) = -62500 \][/tex]
### Part (f)
[tex]\[ 7 \times (50 - 2) \][/tex]
1. Calculate inside the parenthesis:
[tex]\[ 50 - 2 = 48 \][/tex]
2. Multiply the result by 7:
[tex]\[ 7 \times 48 = 336 \][/tex]
### Part (g)
[tex]\[ (-17) \times (-29) \][/tex]
1. Multiply the numbers:
[tex]\[ (-17) \times (-29) = 493 \][/tex]
### Part (h)
[tex]\[ (-57) \times (-19) + 57 \][/tex]
1. Calculate \( (-57) \times (-19) \):
[tex]\[ (-57) \times (-19) = 1083 \][/tex]
2. Add 57 to the result:
[tex]\[ 1083 + 57 = 1140 \][/tex]
So, the solutions are:
(a) 480
(b) -53000
(c) -15000
(d) -4182
(e) -62500
(f) 336
(g) 493
(h) 1140