\begin{tabular}{|c|c|c|c|c|c|}
\hline
\# of washers & Initial velocity [tex]$v_1$[/tex] (m/s) & Final velocity [tex]$v_2$[/tex] (m/s) & Time to travel 0.25 m [tex]$t$[/tex] (s) & Time to travel 0.50 m [tex]$t_2$[/tex] (s) & Acceleration [tex]$a=\left(v_2-v_1\right) /\left(t_2-t\right)$[/tex] \\
\hline
1 & 0.11 & 0.28 & 2.23 & 3.13 & 0.19 \\
\hline
2 & 0.13 & 0.36 & 1.92 & 2.61 & \\
\hline
\end{tabular}

The acceleration of the car with two washers added to the string would be [tex]$\square$[/tex]



Answer :

To calculate the acceleration of the car with two washers added to the string, we can use the given data and the formula for acceleration. Here’s a detailed, step-by-step solution:

1. Identify the Relevant Data:
- Initial velocity, \( v_1 = 0.13 \) m/s
- Final velocity, \( v_2 = 0.36 \) m/s
- Time taken to travel \( 0.50 \) meters, \( t_2 = 2.61 \) seconds
- Initial time \( t_1 = 0 \) seconds (assuming the initial measurement starts at \( t_1 = 0 \))

2. Use the Formula for Acceleration:
The formula for acceleration \( a \) is:
[tex]\[ a = \frac{v_2 - v_1}{t_2 - t_1} \][/tex]

3. Substitute the Values into the Formula:
[tex]\[ a = \frac{0.36 \text{ m/s} - 0.13 \text{ m/s}}{2.61 \text{ s} - 0 \text{ s}} \][/tex]

4. Simplify the Numerator:
[tex]\[ 0.36 \text{ m/s} - 0.13 \text{ m/s} = 0.23 \text{ m/s} \][/tex]

5. Substitute Back into the Formula:
[tex]\[ a = \frac{0.23 \text{ m/s}}{2.61 \text{ s}} \][/tex]

6. Calculate the Acceleration:
[tex]\[ a = 0.08812260536398467 \text{ m/s}^2 \][/tex]

Therefore, the acceleration of the car with two washers added to the string would be [tex]\( 0.088 \text{ m/s}^2 \)[/tex] (rounded to three significant figures).