Answer :
Sure, let's solve the given expression step-by-step:
The expression is:
[tex]\[ \frac{(-16) - 36}{18 \div(-6) - 10} - \frac{4(-17 + 5)}{8} \][/tex]
Step 1: Simplify the numerator and the denominator of the first fraction.
- Calculate the numerator:
[tex]\[ (-16) - 36 = -52 \][/tex]
- Calculate the denominator:
[tex]\[ 18 \div (-6) = -3 \][/tex]
Next, subtract 10:
[tex]\[ -3 - 10 = -13 \][/tex]
- Thus, the first fraction becomes:
[tex]\[ \frac{-52}{-13} = 4 \][/tex]
Step 2: Simplify the numerator of the second fraction.
- First, simplify inside the parentheses:
[tex]\[ -17 + 5 = -12 \][/tex]
- Then, multiply by 4:
[tex]\[ 4 \times (-12) = -48 \][/tex]
- Calculate the denominator:
[tex]\[ 8 \][/tex]
- Now, simplify the second fraction:
[tex]\[ \frac{-48}{8} = -6 \][/tex]
Step 3: Combine the two fractions:
[tex]\[ 4 - (-6) \][/tex]
When subtracting a negative number, we add the positive value:
[tex]\[ 4 - (-6) = 4 + 6 = 10 \][/tex]
Final Answer:
[tex]\[ 10 \][/tex]
The expression is:
[tex]\[ \frac{(-16) - 36}{18 \div(-6) - 10} - \frac{4(-17 + 5)}{8} \][/tex]
Step 1: Simplify the numerator and the denominator of the first fraction.
- Calculate the numerator:
[tex]\[ (-16) - 36 = -52 \][/tex]
- Calculate the denominator:
[tex]\[ 18 \div (-6) = -3 \][/tex]
Next, subtract 10:
[tex]\[ -3 - 10 = -13 \][/tex]
- Thus, the first fraction becomes:
[tex]\[ \frac{-52}{-13} = 4 \][/tex]
Step 2: Simplify the numerator of the second fraction.
- First, simplify inside the parentheses:
[tex]\[ -17 + 5 = -12 \][/tex]
- Then, multiply by 4:
[tex]\[ 4 \times (-12) = -48 \][/tex]
- Calculate the denominator:
[tex]\[ 8 \][/tex]
- Now, simplify the second fraction:
[tex]\[ \frac{-48}{8} = -6 \][/tex]
Step 3: Combine the two fractions:
[tex]\[ 4 - (-6) \][/tex]
When subtracting a negative number, we add the positive value:
[tex]\[ 4 - (-6) = 4 + 6 = 10 \][/tex]
Final Answer:
[tex]\[ 10 \][/tex]