Sure, let's break down the expression step by step with the given values of \( h \) and \( j \).
We start with the expression:
[tex]\[
(h)(h + j + 3)
\][/tex]
First, substitute the given values \( h = 5 \) and \( j = 1 \) into the expression:
[tex]\[
(5)(5 + 1 + 3)
\][/tex]
Next, perform the addition inside the parentheses:
[tex]\[
5 + 1 + 3 = 9
\][/tex]
So now, our expression simplifies to:
[tex]\[
(5)(9)
\][/tex]
Finally, multiply 5 by 9:
[tex]\[
5 \times 9 = 45
\][/tex]
Thus, the value of the expression [tex]\((h)(h + j + 3)\)[/tex] when [tex]\( h = 5 \)[/tex] and [tex]\( j = 1 \)[/tex] is [tex]\( 45 \)[/tex].