\begin{tabular}{|c|c|c|}
\hline
& Set 1 & Set 2 \\
\hline
Charge 1 & [tex]$30 C$[/tex] & [tex]$45 C$[/tex] \\
\hline
Charge 2 & [tex]$15 C$[/tex] & [tex]$15 C$[/tex] \\
\hline
Distance & [tex]$7 \AA$[/tex] & [tex]$7 \AA$[/tex] \\
\hline
\end{tabular}

Which set has more coulombic force? Remember: [tex]$F_c=\frac{k\left(q_1 q_2\right)}{d^2}$[/tex]

A. The sets have an equal amount of coulombic force.
B. Set 1
C. Set 2



Answer :

To determine which set has more Coulombic force, we need to use Coulomb's Law:

[tex]\[ F_c = \frac{k \left(q_1 q_2\right)}{d^2} \][/tex]

where:
- \( F_c \) is the Coulombic force
- \( k \) is Coulomb's constant, approximately \( 8.987551787 \times 10^9 \, \text{N m}^2/\text{C}^2 \)
- \( q_1 \) and \( q_2 \) are the charges
- \( d \) is the distance between the charges

### For Set 1:
Given:
- \( q_1 = 30 \, \text{C} \)
- \( q_2 = 15 \, \text{C} \)
- \( d = 7 \, \text{\AA} = 7 \times 10^{-10} \, \text{m} \)

[tex]\[ F_{c, \text{Set 1}} = \frac{(8.987551787 \times 10^9) \left(30 \times 15\right)}{(7 \times 10^{-10})^2} \][/tex]

From the numerical calculation, we get:

[tex]\[ F_{c, \text{Set 1}} \approx 82538740904.40161 \, \text{N} \][/tex]

### For Set 2:
Given:
- \( q_1 = 45 \, \text{C} \)
- \( q_2 = 15 \, \text{C} \)
- \( d = 7 \, \text{\AA} = 7 \times 10^{-10} \, \text{m} \)

[tex]\[ F_{c, \text{Set 2}} = \frac{(8.987551787 \times 10^9) \left(45 \times 15\right)}{(7 \times 10^{-10})^2} \][/tex]

From the numerical calculation, we get:

[tex]\[ F_{c, \text{Set 2}} \approx 123808111356.60242 \, \text{N} \][/tex]

### Comparison:

- \( F_{c, \text{Set 1}} \approx 82538740904.40161 \, \text{N} \)
- \( F_{c, \text{Set 2}} \approx 123808111356.60242 \, \text{N} \)

Since \( F_{c, \text{Set 2}} > F_{c, \text{Set 1}} \), Set 2 has more Coulombic force.

Therefore, the correct answer is:

Set 2