If [tex]$H(x) = 4x^2 - 16$[/tex] were shifted 7 units to the right and 3 units down, what would the new equation be?

A. [tex]$H(x) = 4(x-9)^2 - 17$[/tex]
B. [tex]$H(x) = 4(x+9)^2 - 17$[/tex]
C. [tex]$H(x) = 4(x-7)^2 - 19$[/tex]
D. [tex]$H(x) = 4(x+7)^2 + 19$[/tex]



Answer :

To find the new equation of the function \( H(x) = 4x^2 - 16 \) after it is shifted 7 units to the right and 3 units down, follow these steps:

1. Shift the function 7 units to the right: To shift a function horizontally to the right, replace \( x \) with \( x-7 \). Therefore,
[tex]\[ H(x-7) = 4(x-7)^2 - 16 \][/tex]

2. Shift the function 3 units down: To shift a function vertically down, subtract 3 from the entire function. Therefore,
[tex]\[ H(x-7) - 3 = 4(x-7)^2 - 16 - 3 \][/tex]

3. Simplify the new equation: Combine the constants,
[tex]\[ 4(x-7)^2 - 19 \][/tex]

So, the new equation of the function after shifting it 7 units to the right and 3 units down is:
[tex]\[ \boxed{4(x-7)^2 - 19} \][/tex]

Referencing the given multiple-choice options, the correct answer aligns with option C:
[tex]\[ C. \, H(x) = 4(x-7)^2 - 19 \][/tex]