Select the correct answer.

What is the nuclear binding energy for uranium-238 in joules? Assume the following:
Mass defect [tex]$= 3.2008 \times 10^{-27}$[/tex] kilograms
Use [tex]$E = m c^2$[/tex], with [tex]$c = 3 \times 10^8 \, \text{m/s}$[/tex]

A. [tex]$0.28807 \times 10^{-12}$[/tex] joules
B. [tex]$2.8807 \times 10^{-12}$[/tex] joules
C. [tex]$2.8807 \times 10^{-10}$[/tex] joules
D. [tex]$2.8807 \times 10^{-8}$[/tex] joules
E. [tex]$3.2008 \times 10^{27}$[/tex] joules



Answer :

To find the nuclear binding energy for uranium-238, we need to use Einstein's mass-energy equivalence formula:
[tex]\[ E = mc^2 \][/tex]

Given:
- Mass defect \( m = 3.2008 \times 10^{-27} \) kg
- Speed of light \( c = 3 \times 10^8 \) m/s

First, we substitute the given values into the formula:
[tex]\[ E = (3.2008 \times 10^{-27} \, \text{kg}) \times (3 \times 10^8 \, \text{m/s})^2 \][/tex]

Let's calculate \( c^2 \) first:
[tex]\[ c^2 = (3 \times 10^8 \, \text{m/s})^2 = 9 \times 10^{16} \, \text{m}^2/\text{s}^2 \][/tex]

Now, multiply the mass defect by \( c^2 \):
[tex]\[ E = 3.2008 \times 10^{-27} \, \text{kg} \times 9 \times 10^{16} \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ E = 3.2008 \times 9 \times 10^{-27 + 16} \, \text{J} \][/tex]
[tex]\[ E = 28.8072 \times 10^{-11} \, \text{J} \][/tex]
[tex]\[ E = 2.88072 \times 10^{-10} \, \text{J} \][/tex]

So, the nuclear binding energy \( E \) is \( 2.88072 \times 10^{-10} \) joules.

Examining the given choices:
A. \( 0.28807 \times 10^{-12} \) joules
B. \( 2.8807 \times 10^{-12} \) joules
C. \( 2.8807 \times 10^{-10} \) joules
D. \( 2.8807 \times 10^{-8} \) joules
E. \( 3.2008 \times 10^{27} \) joules

The correct choice is:
C. [tex]\( 2.8807 \times 10^{-10} \)[/tex] joules