How many moles of trifluoromethanoic acid [tex]$\left( \text{CHF}_3\text{O}_3\text{S} \right)$[/tex] are present in [tex]$9.0345 \times 10^{24}$[/tex] molecules of [tex]$\left( \text{CHF}_3\text{O}_3\text{S} \right)$[/tex]?

A. [tex]$1.5 \times 10^{23}$[/tex] mol
B. [tex]$1.5$[/tex] mol
C. [tex]$15$[/tex] mol
D. [tex]$1.5 \times 10^{24}$[/tex] mol
E. [tex]$0.15$[/tex] mol



Answer :

To determine how many moles of trifluoromethanoic acid (CHF₃O₃S) are present in \( 9.0345 \times 10^{24} \) molecules of CHF₃O₃S, we can use Avogadro's number. Avogadro's number tells us that one mole of a substance contains \( 6.022 \times 10^{23} \) molecules.

Here is how we can calculate the number of moles step by step:

1. Identify the number of molecules given:
[tex]\[ 9.0345 \times 10^{24} \text{ molecules} \][/tex]

2. Identify Avogadro's number:
[tex]\[ 6.022 \times 10^{23} \text{ molecules per mole} \][/tex]

3. Use the formula to convert molecules to moles:
[tex]\[ \text{Number of moles} = \frac{\text{Number of molecules}}{\text{Avogadro's number}} \][/tex]

4. Substitute the given values:
[tex]\[ \text{Number of moles} = \frac{9.0345 \times 10^{24} \text{ molecules}}{6.022 \times 10^{23} \text{ molecules per mole}} \][/tex]

5. Perform the division to find the number of moles:
[tex]\[ \text{Number of moles} \approx 15.002490866821654 \][/tex]

The result of our calculation is approximately \( 15.002490866821654 \) moles. When we look at the provided answer options:
- A. \( 1.5 \times 10^{23} \text{ mol} \)
- B. \( 1.5 \text{ mol} \)
- C. \( 15 \text{ mol} \)
- D. \( 1.5 \times 10^{24} \text{ mol} \)
- E. \( 0.15 \text{ mol} \)

It is clear that the closest answer to our calculated result of 15.002490866821654 moles is option C. \( 15 \text{ mol} \).

Therefore, the correct answer is:
C. [tex]\( 15 \text{ mol} \)[/tex]