Question:
Which of the following points \((x, y)\) lies on the graph of \(8x + 2y = 24\)?

A. \((-1, 8)\)
B. \((2, 8)\)
C. \((6, -12)\)
D. [tex]\((8, 2)\)[/tex]



Answer :

To determine which of the given points lies on the graph of the equation \( 8x + 2y = 24 \), we will test each point by substituting \( x \) and \( y \) into the equation and checking if the equality holds.

Let's examine each point:

1. Point \((-1, 8)\)
[tex]\[ \begin{align*} 8x + 2y &= 8(-1) + 2(8) \\ &= -8 + 16 \\ &= 8 \end{align*} \][/tex]
Since \( 8 \neq 24 \), the point \((-1, 8)\) does not lie on the graph of the equation.

2. Point \((2, 8)\)
[tex]\[ \begin{align*} 8x + 2y &= 8(2) + 2(8) \\ &= 16 + 16 \\ &= 32 \end{align*} \][/tex]
Since \( 32 \neq 24 \), the point \((2, 8)\) does not lie on the graph of the equation.

3. Point \((6, -12)\)
[tex]\[ \begin{align*} 8x + 2y &= 8(6) + 2(-12) \\ &= 48 - 24 \\ &= 24 \end{align*} \][/tex]
Since \( 24 = 24 \), the point \((6, -12)\) lies on the graph of the equation.

4. Point \((8, 2)\)
[tex]\[ \begin{align*} 8x + 2y &= 8(8) + 2(2) \\ &= 64 + 4 \\ &= 68 \end{align*} \][/tex]
Since \( 68 \neq 24 \), the point \((8, 2)\) does not lie on the graph of the equation.

Therefore, the point [tex]\((6, -12)\)[/tex] is the one that lies on the graph of the equation [tex]\( 8x + 2y = 24 \)[/tex].