Simplify the expression below.

[tex] \left(x^5\right)\left(x^2\right) [/tex]

A. [tex] x^2 [/tex]
B. [tex] x^5 [/tex]
C. [tex] x^7 [/tex]
D. [tex] x^{10} [/tex]



Answer :

To simplify the expression \((x^5)(x^2)\), we use the properties of exponents. Specifically, when multiplying two exponential expressions with the same base, we add the exponents.

Here's the step-by-step solution:

1. Identify the base: In both \(x^5\) and \(x^2\), the base is \(x\).
2. Identify the exponents: The exponents are 5 and 2.
3. Add the exponents together: \(5 + 2\).

Therefore, \( (x^5)(x^2) = x^{5 + 2} = x^7 \).

So, the simplified expression is:

[tex]\[ x^7 \][/tex]

The correct answer is [tex]\( \boxed{x^7} \)[/tex] (Option C).