Select the correct answer from the drop-down menu.

Simplify the expression [tex]\frac{\left(x^{25}\right)^{-6}}{\left(x^{-3}\right)^{48}}[/tex].

The power of [tex]x[/tex] in the simplified expression is [tex]\square[/tex].



Answer :

To simplify the expression \(\frac{(x^{25})^{-6}}{(x^{-3})^{48}}\), we can follow these steps:

1. Apply the power rule, which states that \((x^a)^b = x^{a \cdot b}\), to simplify the exponents in the numerator and denominator.
- For the numerator \((x^{25})^{-6}\):
[tex]\[ (x^{25})^{-6} = x^{25 \cdot (-6)} = x^{-150} \][/tex]

- For the denominator \((x^{-3})^{48}\):
[tex]\[ (x^{-3})^{48} = x^{-3 \cdot 48} = x^{-144} \][/tex]

2. Next, express the original fraction with these simplified exponents:
[tex]\[ \frac{x^{-150}}{x^{-144}} \][/tex]

3. When dividing exponents with the same base, we subtract the exponent in the denominator from the exponent in the numerator:
[tex]\[ x^{-150} / x^{-144} = x^{-150 - (-144)} = x^{-150 + 144} = x^{-6} \][/tex]

Therefore, the power of [tex]\(x\)[/tex] in the simplified expression is [tex]\(-6\)[/tex].