Simplify the expression below.

[tex]\[ \left(x^3\right)^2 \][/tex]

A. \( x^3 \)

B. \( x^5 \)

C. \( x^6 \)

D. [tex]\( x^{32} \)[/tex]



Answer :

Sure! Let's simplify the expression \(\left(x^3\right)^2\) step-by-step.

Given expression: \(\left(x^3\right)^2\)

We will use the exponentiation rule for this simplification, which states that \((a^m)^n = a^{m*n}\).

In our expression:
- \(a = x\)
- \(m = 3\)
- \(n = 2\)

Applying the rule:
[tex]\[ (a^m)^n = x^{3 \cdot 2} = x^6 \][/tex]

Thus, the expression \(\left(x^3\right)^2\) simplifies to \(x^6\).

The correct answer is \( \boxed{x^6} \).

Therefore, the correct choice is:
C. [tex]\(x^6\)[/tex]