The equation [tex]\frac{x^2}{24^2} - \frac{y^2}{[\ldots]^2} = 1[/tex] represents a hyperbola centered at the origin with a directrix of [tex]x = \frac{576}{26}[/tex].
\begin{tabular}{|l|l|}
\hline
Vertices: [tex](-a, 0), (a, 0)[/tex] & Vertices: [tex](0, -a), (0, a)[/tex] \\
Foci: [tex](-c, 0), (c, 0)[/tex] & Foci: [tex](0, -c), (0, c)[/tex] \\
Asymptotes: [tex]y = \pm \frac{b}{a} x[/tex] & Asymptotes: [tex]y = \pm \frac{a}{b} x[/tex] \\
Directrices: [tex]x = \pm \frac{a^2}{c}[/tex] & Directrices: [tex]y = \pm \frac{a^2}{c}[/tex] \\
Standard Equation: [tex]\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1[/tex] & Standard Equation: [tex]\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1[/tex] \\
\hline
\end{tabular}
The positive value [tex]\square[/tex] correctly fills in the blank in the equation.